1,879 research outputs found

    Flat Thomas-Fermi artificial atoms

    Full text link
    We consider two-dimensional (2D) "artificial atoms" confined by an axially symmetric potential V(ρ)V(\rho). Such configurations arise in circular quantum dots and other systems effectively restricted to a 2D layer. Using the semiclassical method, we present the first fully self-consistent and analytic solution yielding equations describing the density distribution, energy, and other quantities for any form of V(ρ)V(\rho) and an arbitrary number of confined particles. An essential and nontrivial aspect of the problem is that the 2D density of states must be properly combined with 3D electrostatics. The solution turns out to have a universal form, with scaling parameters ρ2/R2\rho^2/R^2 and R/aBR/a_B^* (RR is the dot radius and aBa_B^* is the effective Bohr radius)

    Detector imperfections in photon-pair source characterization

    Full text link
    We analyze how imperfections in single-photon detectors impact the characterization of photon-pair sources. We perform exact calculations to reveal the effects of multi-pair emissions and of noisy, non-unit efficiency, non photon-number resolving detections on the Cauchy-Schwarz parameter, on the second order auto-correlation and cross-correlation functions, and on the visibilities of both Hong-Ou-Mandel and Bell-like interferences. We consider sources producing either two-mode squeezed states or states with a Poissonian photon distribution. The proposed formulas are useful in practice to determine the impacts of multi-pair emissions and dark counts in standard tests used in quantum optics.Comment: 9 pages, 11 figure

    Photon-bunching measurement after 2x25km of standard optical fibers

    Full text link
    To show the feasibility of a long distance partial Bell-State measurement, a Hong-Ou-Mandel experiment with coherent photons is reported. Pairs of degenerate photons at telecom wavelength are created by parametric down conversion in a periodically poled lithium niobate waveguide. The photon pairs are separated in a beam-splitter and transmitted via two fibers of 25km. The wave-packets are relatively delayed and recombined on a second beam-splitter, forming a large Mach-Zehnder interferometer. Coincidence counts between the photons at the two output modes are registered. The main challenge consists in the trade-off between low count rates due to narrow filtering and length fluctuations of the 25km long arms during the measurement. For balanced paths a Hong-Ou-Mandel dip with a visibility of 47.3% is observed, which is close to the maximal theoretical value of 50% developed here. This proves the practicability of a long distance Bell state measurement with two independent sources, as e.g. required in an entanglement swapping configuration in the scale of tens of km.Comment: 6 pages, 5 figure

    The integrated 3-point correlation function of cosmic shear

    Full text link
    We present the integrated 3-point shear correlation function iζ±i\zeta_{\pm} -- a higher-order statistic of the cosmic shear field -- which can be directly estimated in wide-area weak lensing surveys without measuring the full 3-point shear correlation function, making this a practical and complementary tool to 2-point statistics for weak lensing cosmology. We define it as the 1-point aperture mass statistic MapM_{\mathrm{ap}} measured at different locations on the shear field correlated with the corresponding local 2-point shear correlation function ξ±\xi_{\pm}. Building upon existing work on the integrated bispectrum of the weak lensing convergence field, we present a theoretical framework for computing the integrated 3-point function in real space for any projected field within the flat-sky approximation and apply it to cosmic shear. Using analytical formulae for the non-linear matter power spectrum and bispectrum, we model iζ±i\zeta_{\pm} and validate it on N-body simulations within the uncertainties expected from the sixth year cosmic shear data of the Dark Energy Survey. We also explore the Fisher information content of iζ±i\zeta_{\pm} and perform a joint analysis with ξ±\xi_{\pm} for two tomographic source redshift bins with realistic shape-noise to analyse its power in constraining cosmological parameters. We find that the joint analysis of ξ±\xi_{\pm} and iζ±i\zeta_{\pm} has the potential to considerably improve parameter constraints from ξ±\xi_{\pm} alone, and can be particularly useful in improving the figure of merit of the dynamical dark energy equation of state parameters from cosmic shear data.Comment: Accepted for publication in MNRAS; v2 matches the accepted manuscript; 18 pages + appendi

    Modulation of ISOs by land-atmosphere feedback and contribution to the interannual variability of Indian summer monsoon

    Get PDF
    A mechanism of internal variability of Indian summer monsoon through the modulation of intraseasonal oscillation (ISO) by land-atmosphere feedback is proposed. Evidence of feedback between surface soil moisture and ISOs is seen in the soil moisture data from GSWP-2 and rainfall data from observations. Using two sets of internal simulation by a regional climate model (RCM), it is shown that internally generated anomalous soil moisture interacts with the following ISO and generates interannual variability. To gain further insight, 27 years of sensitivity experiment by prescribing wet (dry) soil moisture condition during break (active) period along with a control simulation are carried out. The sensitivity experiment reveals the large-scale nature of soil moisture and ISO feedback which takes place through the changes in atmospheric stability by altering lower-level atmospheric conditions. The feedback is inherent to the monsoon system and a part of it acts through the intraseasonal varying memory of soil moisture. The RCM used to test the hypothesis is constrained by one-way interactions at the lateral boundary. Experiments with a much larger domain upheld the findings and hence suggest the true nature of soil moisture and ISO feedback present in the monsoon system

    A versatile source of polarisation entangled photons for quantum network applications

    Get PDF
    We report a versatile and practical approach for generating high-quality polarization entanglement in a fully guided-wave fashion. Our setup relies on a high-brilliance type-0 waveguide generator producing paired photon at a telecom wavelength associated with an advanced energy-time to polarisation transcriber. The latter is capable of creating any pure polarization entangled state, and allows manipulating single photon bandwidths that can be chosen at will over five orders of magnitude, ranging from tens of MHz to several THz. We achieve excellent entanglement fidelities for particular spectral bandwidths, i.e. 25 MHz, 540 MHz and 100 GHz, proving the relevance of our approach. Our scheme stands as an ideal candidate for a wide range of network applications, ranging from dense division multiplexing quantum key distribution to heralded optical quantum memories and repeaters.Comment: 5 figure

    Experimental polarization encoded quantum key distribution over optical fibres with real-time continuous birefringence compensation

    Full text link
    In this paper we demonstrate an active polarization drift compensation scheme for optical fibres employed in a quantum key distribution experiment with polarization encoded qubits. The quantum signals are wavelength multiplexed in one fibre along with two classical optical side channels that provide the control information for the polarization compensation scheme. This set-up allows us to continuously track any polarization change without the need to interrupt the key exchange. The results obtained show that fast polarization rotations of the order of 40*pi rad/s are effectively compensated for. We demonstrate that our set-up allows continuous quantum key distribution even in a fibre stressed by random polarization fluctuations. Our results pave the way for Bell-state measurements using only linear optics with parties separated by long-distance optical fibres
    corecore